[bookmark: _Toc30788283]Art Canvas API Documentation
Contents
Art Canvas API Documentation	1
Basic	2
JavaScript:	2
HTML:	2
JavaScript Variables	3
Misc JavaScript Functions	4
JavaScript Drawing Functions	5



[bookmark: _Toc30788284][bookmark: _GoBack]Basic
[bookmark: _Toc30788285]JavaScript:
	Firstly, all units are required to call addUnit.
	As an example, here is the usage in the scene unit:
		addUnit(“scene”, “blue”, 1);
	Syntax: addUnit(<unit_name>, <color>, priority)
· The unit_name should be consistent throughout the whole project, including filenames.
· Color may be “red”, “green”, “blue”, or “yellow”
· Priority will allow you to be placed before or after other units, any unit wishing to be seriously added to the site should use a priority of 10 or higher, or it may be rejected.

Now you may do what you wish in the unit.
· artClear() – will clear the canvas back to default gray, and commit to undo buffer
· artCommit() – adds the current image to the undo buffer, for ease of use, please put these at the end of all functions that draw to the canvas, to allow the user to press undo if the outcome was undesired
· setElement(id, html) – sets the innerHTML of element with id id to html
· addDebug(unit, text) – adds text to the innerHTML of element with id <unit>Debug
[bookmark: _Toc30788286]HTML:
	To conform with other units, please structure your html file the same way as the sample file.
	Especially the debug paragraph element, if you want to use debug features this is required.
Other than that, you are free to use your own combination of buttons, inputs, or whatever else you need to interact with your script code.

[bookmark: _Toc30788287]JavaScript Variables
· artCanvas – the canvas element of the page
· artCtx – 2d context of artCanvas (where you draw to)
· artCanvasSyle – Boolean, true if set to “fill”, false if set to “stroke”
· colorData – current color values and their status, status is first value, color is second value
examples:
colorData.R[1] will return the current value of red in hexadecimal (as a string)
colorData.G[0] will return either “Random”, or “Manual”
colorData.B will return an array in the form of [status, value], ie: [“Manual”, “a6”]
· artScale – current drawing scale (default = 5)
· artWidth – current drawing line width (default = 0.5)
· artGradient – Boolean, whether or not to draw using gradients instead of colorData
· artDebug – Boolean, if true then user has requested debug information to be output


[bookmark: _Toc30788288]Misc JavaScript Functions
· ranInt(range, start) – returns a random integer of range possible values, beginning with start
· ranNum(range, start) – returns a random real number of range possible values, beginning with start
· ranColor() – returns a random 2 digit hexadecimal number as a string
· getCoord(start, range) – returns 2 random numbers, of range possible values, beginning with start
· getColor(coord, scale) – returns a random RGB hex color, coord and scale are only used if artGradient is true. How they work together to create the gradient is rather complex, and is beyond the scope of this document.


[bookmark: _Toc30788289]JavaScript Drawing Functions
· drawSquare(xy, scale, color, fill, lW) – draws a square at coordinates xy (array), with width/height of scale * 2, with hex color color, fill = Boolean (fill vs stroke), and with lW line width (when drawing stroke instead of fill)
· drawCircle(xy, radius, color, fill, lW) – draws a circle at coordinates xy (array), with radius radius, hex color color, fill = Boolean (fill vs stroke), and with lW line width (when drawing stroke instead of fill)
· drawPolygon(xy, color, scale, points, fill, lW) – draws a “polygon” using same rules as the above functions, however: points is not an array of xy coordinates. Points is an array of angles. A line is drawn between these different angles of a circle (for example [0, 120, 240] would draw a triangle) and the filled in, or traced.
